Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Int J Biol Macromol ; 265(Pt 2): 131039, 2024 Apr.
Article En | MEDLINE | ID: mdl-38518938

In our present work, an explicit crosslinked thermo-responsive hydrogel platform has been developed, by using polyacrylamide (PAAm), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(cyclohexyl methacrylate) (PCHMA), and then coupled with urease to yield bioconjugates (BCs). Synergic effect of these polymer units provides thermoresponsive nature, optimum crosslinking with desired swelling behaviour, and stability and improved catalytic to Urease in the resultant BCs. Synthesis of the terpolymer has been achieved by employing HEMA (monomer as well as crosslinker), instead of using the conventional crosslinkers, through free radical solution polymerization technique. Various grades of TRPUBs have been fabricated by varying HEMA and CHMA contents while keeping fixed amounts of AAm. Further, the structural analysis of BCs has been done by fourier transform infra-red spectroscopic study and their thermal stabilities have been studied by thermogravimetric analysis. Urea present in TRPUBs has beenanalysed for its hydrolysis atdifferent temperatures viz., 25 °C, 45 °C and 70 °C. Further, the effect of crosslinking, temperature and reaction time on catalytic activities of TRPUBs has been studied. TRPUBs grades have showna maximum swelling capacity up to 5200 %; excellent catalytic activity even at 70 °C; and 85 % activity retention after 18 days storage in buffer medium.


Acrylic Resins , Hydrogels , Urease , Hydrogels/chemistry , Urease/chemistry , Methacrylates/chemistry , Polyhydroxyethyl Methacrylate/chemistry , Acrylamides
2.
Environ Sci Pollut Res Int ; 30(42): 95215-95249, 2023 Sep.
Article En | MEDLINE | ID: mdl-37597146

The most vital issues of the modern world for a sustainable future are "health" and "the environment." Scientific endeavors to tackle these two major concerns for mankind need serious attention. The photocatalytic activity toward curbing environmental pollution and antibacterial performance toward a healthy society are two directions that have been emphasized for decades. Recently, materials engineering, in their nanodimension, has shown tremendous possibilities to integrate these functionalities within the same materials. In particular, hybrid nanostructures have shown magnificent prospects to combat both crucial challenges. Many researchers are separately engaged in this important field of research but the collective knowledge on this domain which can facilitate them to excel is badly missing. The present article integrates the development of different hybrid nanostructures which exhibit both photocatalytic degradations of environmental pollutants and antibacterial efficiency. Various synthesis techniques of those hybrid nanomaterials have been discussed. Hybrid nanosystems based on several successful materials have been categorically discussed for better insight into the research advancement in this direction. In particular, Ag-based, metal oxides-based, layered carbon material-based, and Mexene- and self-cleaning-based materials have been chosen for detailing their performance as anti-pollutant and antibacterial materials. Those hybrid systems along with some miscellaneous booming nanostructured materials have been discussed comprehensively with their success and limitations toward their bifunctionality as antipollutant and antibacterial agents.


Environmental Pollutants , Nanostructures , Anti-Bacterial Agents/pharmacology , Carbon , Engineering
3.
Soft Matter ; 18(45): 8647-8655, 2022 Nov 23.
Article En | MEDLINE | ID: mdl-36349658

Jack bean urease, the first nickel metalloenzyme, and crystallized enzymes have historical significance due to their several applications in the biomedical and other fields. For the first time, cross-linker free pH-responsive hydrogel-urease bioconjugates have been reported. Without the use of divinyl benzene or divinyl acrylamide derivatives, urease was immobilized inside the hydrogel matrix and various grades of bioconjugates were synthesized. The hydrogel-urease bioconjugate exhibits excellent swelling-deswelling and pH-responsive characteristics without affecting the urease enzyme. The pH-responsive bioconjugates were characterized by FT-IR, powder XRD, SEM, TGA, and UV-vis spectroscopy. Urea hydrolysis and enzyme affinity have been investigated at pH 4, pH 7, and pH 11 using bioconjugates and free urease. At basic pH, BCs showed excellent enzyme activity. In summary, this technique is effective for stabilizing biomacromolecules at different pHs for a variety of real applications.


Urea , Urease , Urease/chemistry , Urea/chemistry , Hydrolysis , Hydrogels/chemistry , Acrylamide , Spectroscopy, Fourier Transform Infrared , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration
4.
RSC Adv ; 10(38): 22742-22757, 2020 Jun 10.
Article En | MEDLINE | ID: mdl-35514551

The present study aimed to synthesise bio-molecule functionalized silver nanoparticles (AgNPs) using leaf extract from mulberry variety S-1635 (Morus alba L.) and to explore its antibacterial efficacy against multidrug resistant (MDR) gut bacteria isolated from natural infection observed from silkworm larvae in rearing conditions. AgNPs formation was established by surface plasmon resonance at 480 nm. The crystallinity of the synthesised AgNPs was checked by HR-TEM and XRD analysis. SEM and TEM characterisation further exhibited the spherical, monodispersed, well scattered nature of the AgNPs with an average particle size of 11.8 nm ± 2.8. The presence of (111), (200), (220) and (311) planes in Bragg's reflections confirmed the face-cantered-cubic crystalline silver. EDX analysis confirmed the presence of elemental silver. FT-IR spectra revealed functional groups were responsible for the reduction of silver ions. The zeta potential value of -17.3 mV and -25.6 mV was recorded in MH and DMEM/F-12 media, respectively. The LC-QTOF/MS and HRMS spectra disclosed the presence of bioactive compounds like flavonoid, gallic acid, and stigmasterol, which are probably involved in the reduction and functionalization of AgNPs. The antibacterial efficacy of bio-molecule functionalized AgNPs and the naked AgNPs was tested on Gram-positive and Gram-negative bacteria isolated from silkworms and characterized by using 16S rDNA and gyrB genes. The cytotoxicity of AgNPs was tested on WRL-68, HEK-293, ACHN, and HUH-7 cell lines using MTT assay. This study provides an insight into the application of bio-molecule functionalized AgNPs for combating various silkworm pathogens which severely affect the agro-rural economy of developing countries.

5.
Colloids Surf B Biointerfaces ; 177: 512-519, 2019 May 01.
Article En | MEDLINE | ID: mdl-30818244

Core-shell α-Fe2O3-ZnO structures of different nanotextured morphology were synthesized through wet chemical routes using different solvents like ethanol, ethanolamine, water and acetaldehyde. Morphological tuning using different solvents resulted in the formation of different shapes, such as disc, spindle, rod and sphere (abbreviated as FZ-ND, FZ-NSP, FZ-NR and FZ-NS, respectively). Structural, morphological and compositional characterization of these nanoparticles (NPs) has been carried out. Antibacterial efficacy of the synthesized NPs was checked against Gram negative V. cholerae N16961 (VcN16961) and Gram positive S. aureus bacteria by recording optical density (OD) at different time points. Among the NPs tested, FZ-NSP was found to be the most effective against VcN16961, while FZ-NR showed maximum efficacy against S. aureus, implying the importance of nanotextured surface as well as the morphology in the manifestation of antibacterial activity. The kinetics of growth for both the bacteria has been modelled using logistic approach. Cytotoxicity was evaluated through MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide) assay against human breast adenocarcinoma cell line (MCF-7), human hepatocarcinoma cell line (HepG2) and against normal human embryonic kidney cell line (HEK-293). The lesser toxicity of α-Fe2O3-ZnO towards HEK-293 and the potent anticancer activity against MCF-7 and HepG2 cells underline its applicability as anticancer agent. With continued improvement of nanotechnology, this study may pave the way for designing and construction of various morphologically diverse, nanotextured materials with desired functional attributes.


Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Ferric Compounds/pharmacology , Nanocomposites/chemistry , Staphylococcus aureus/drug effects , Vibrio cholerae/drug effects , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferric Compounds/chemistry , HEK293 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Particle Size , Surface Properties , Zinc Oxide/chemistry
6.
ACS Omega ; 3(3): 3004-3013, 2018 Mar 31.
Article En | MEDLINE | ID: mdl-31458566

The present article reports the investigation on the effects of solvent and position of functionality on various physical properties of polyurethanes (PUs) based on hydroxyl-terminated polybutadiene (HTPB). The PU films (curative)  were prepared by coupling HTPB (P0) with isophorone diisocyanate (IPDI) in various solvent media. The PUs obtained in different solvent media displayed similar thermal profile and glass transition temperature (T g), but their tensile properties varied significantly. Optimized tensile properties were observed when tetrahydrofuran was used as the solvent media. In the course, the investigation of the functionality effect, tetrazole (M1, M2, and M3) were covalently attached at the terminal carbon of HTPB to obtain three modified HTPBs (P1, P2, and P3), thereby coupling with IPDI to obtain the corresponding tetrazole functional PUs films. Pristine (P0-PU) and functional PU (P1-PU, P2-PU, and P3-PU) films have similar thermal profile and T g (-76 °C), but they have a notable enhancement in tensile properties; for example, tensile strength and elongation at break of P0-PU were found to be 3.21 MPa and 727%, respectively, whereas these values were 4.84 MPa and 958%, respectively, in the case of P3-PU. It was observed that on increasing the number of methylene group from 1 to 3 between HTPB and tetrazole moiety, the strength of hydrogen bonding increases, which facilitates better packing of urethane network in the PU and hence improves the tensile properties. Also, modification of pristine HTPB with tetrazole derivatives enhanced the calorific values of the resulting PUs.

7.
Methods Enzymol ; 590: 143-167, 2017.
Article En | MEDLINE | ID: mdl-28411636

Jack bean urease is an important enzyme not only because of its numerous uses in medical and other fields but also because of its historical significance-the first enzyme to be crystallized and also the first nickel metalloenzyme. This enzyme hydrolyzes urea into ammonia and carbon dioxide; however, the stability of this enzyme at ambient temperature is a bottleneck for its applicability. To improve urease stability, it was immobilized on different substrates, particularly on polymeric hydrogels. In this study, the enzyme was coupled covalently with poly(acrylamide) hydrogel with an yield of 18µmol/cm3. The hydrogel served as the nanoarmor and protected the enzyme against denaturation. The enzyme immobilized on the polymer hydrogel showed no loss in activity for more than 30 days at ambient temperature, whereas free enzyme lost its activity within a couple of hours. The Michaelis-Menten constant (Km) for free and immobilized urease were 0.0256 and 0.2589mM, respectively, on the first day of the study. The Km of the immobilized enzyme was approximately 10 times higher than that of the free enzyme. The hydrogel technique was also used to prepare light diffracting polymerized colloidal crystal array in which urease enzyme was covalently immobilized. This system was applied for the detection of mercury (Hg2+) with the lower limit as 1ppb, which is below the maximum contaminant limit (2ppb) for mercury ions in water. The experimental details of these studies are presented in this chapter.


Acrylic Resins/chemistry , Enzymes, Immobilized/chemistry , Urease/chemistry , Disulfides/chemistry , Enzyme Stability , Hydrogels/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Mercury/analysis , Plant Proteins/chemistry , Protein Binding , Urea/chemistry , Water Pollutants, Chemical/analysis , Water Quality
8.
J Colloid Interface Sci ; 463: 164-72, 2016 Feb 01.
Article En | MEDLINE | ID: mdl-26520823

A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses.


Canavalia/enzymology , Enzymes, Immobilized/metabolism , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/metabolism , Polymers/metabolism , Urease/metabolism , Enzyme Stability , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Polymers/chemistry , Temperature , Urease/chemistry
9.
J Colloid Interface Sci ; 443: 137-42, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25544320

Here we report simple and robust one-pot method for the preparation of polystyrene (PS)/graphene oxide (GO) nanocomposite using reversible addition fragmentation chain transfer (RAFT) modified GO in surfactant free emulsion polymerization (SFEP). The results suggested that ionic comonomer, styrene sulfonate sodium salt (SS-Na), concentration plays vital role in forming PS/GO nanocomposite. X-ray and electron diffraction studies suggest that there is no recombination of GO sheets when moderate SS-Na concentration is used, resulting complete exfoliation of GO sheets in the PS/GO nanocomposite. The formation of core-shell particles in which PS is the core and polystyrene sulfonate sodium salt (PSS-Na) is the shell, and the specific interactions between functional groups of GO and PSS-Na are attributed as the driving forces for the PS/GO nanocomposite formation.

10.
ACS Appl Mater Interfaces ; 6(23): 21286-96, 2014 Dec 10.
Article En | MEDLINE | ID: mdl-25365766

Although increased number of reports in recent years on proton exchange membrane (PEM) developed from nanocomposites of polybenzimidazole (PBI) with inorganic fillers brought hope to end the saga of contradiction between proton conductivity and variety of stabilities, such as mechanical, thermal,chemical, etc.; it still remains a prime challenge to develop a highly conducting PEM with superior aforementioned stabilities. In fact the very limited understanding of the interactions especially interfacial interaction between PBI and inorganic filler leads to confusion over the choice of inorganic filler type and their surface functionalities. Taking clue from our earlier study based on poly(4,4'-diphenylether-5,5'-bibenzimidazole) (OPBI)/silica nanocomposites, where silica nanoparticles modified with short chain amine showed interfacial interaction-dependent properties, in this work we explored the possibility of enhanced interfacial interaction and control over the interface by optimizing the chemistry of the silica surface. We functionalized the surface of silica nanoparticles with a longer aliphatic chain having multiple amine groups (named as long chain amine modified silica and abbreviated as LAMS). FTIR and (13)C solid-state NMR provided proof of hydrogen bonding interactions between the amine groups of modifier and those of OPBI. LAMS nanoparticles yielded a more distinguished self-assembly extending all over the OPBI matrix with increasing concentrations. The crystalline nature of these self-assembled clusters was probed by wide-angle X-ray diffraction (WAXD) studies and the morphological features were captured by transmission electron microscope (TEM). We demonstrated the changes in storage modulus and glass transition temperature (Tg) of the membranes, the fundamental parameters that are more sensitive to interfacial structure using temperature dependent dynamic mechanical analysis (DMA). All the nanocomposite membranes displayed enhanced mechanical, thermal and chemical stability than neat OPBI. The lower water uptake and swelling ratio and volume in both acid and water reflected the more hydrophobic characteristic of the nanocomposites. All the nanocomposite membranes showed phosphoric acid (PA) values to be higher than OPBI but the levels showed decreasing trend with increasing silica content; the reason attributed to the interparticle interaction. The self-assembled clusters of LAMS nanoparticles in the matrix created more sites for proton hopping as a result of which the proton conductivity of all the nanocomposites displayed an increasing trend.

11.
ACS Appl Mater Interfaces ; 6(9): 6851-64, 2014 May 14.
Article En | MEDLINE | ID: mdl-24712484

A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.

12.
ACS Appl Mater Interfaces ; 4(10): 5256-65, 2012 Oct 24.
Article En | MEDLINE | ID: mdl-22953698

In continuation (J. Phys. Chem. B2008, 112, 5305; J. Colloid Interface Sci. 2010, 351, 374) of our quest for proton exchange membrane (PEM) developed from polybenzimidazole (PBI) blends, novel polymer blend membranes of PBI and poly(1-vinyl-1,2,4-triazole) (PVT) were prepared using a solution blending method. The aim of the work was to investigate the effect of the blend composition on the properties, e.g., thermo-mechanical stability, swelling, and proton conductivity of the blend membranes. The presence of specific interactions between the two polymers in the blends were observed by studying the samples using varieties of spectroscopic techniques. Blends prepared in all possible compositions were studied using a differential scanning calorimetry (DSC) and exhibited a single T(g) value, which lies between the T(g) value of the neat polymers. The presence of a single composition-dependent T(g) value indicated that the blend is a miscible blend. The N-H···N interactions between the two polymers were found to be the driving force for the miscibility. Thermal stability up to 300 °C of the blend membranes, obtained from thermogravimetric analysis, ensured their suitability as PEMs for high-temperature fuel cells. The proton conductivity of the blend membranes have improved significantly, compared to neat PBI, because of the presence of triazole moiety, which acts as a proton facilitator in the conduction process. The blend membranes showed a considerably lower increase in thickness and swelling ratio than that of PBI after doping with phosphoric acid (PA). We found that the porous morphology of the blend membranes caused the loading of a larger amount of PA and, consequently, higher proton conduction with lower activation energy, compared to neat PBI.

13.
J Colloid Interface Sci ; 361(2): 534-42, 2011 Sep 15.
Article En | MEDLINE | ID: mdl-21700294

Emulsion copolymerizations of styrene were carried out with four structurally different ionic comonomers namely acrylic acid (AAc), methacrylic acid (MAA), 2-hydroxyethyl methacrylate (HEMA), and sodium styrene sulfonate (NaSS) to study the effect of monomer structure on the copolymerization kinetics and size, morphology, charge density, and the self-assembly of the particles. The copolymerization kinetics was found to be highly dependent upon the ionic comonomer structure, and the nature of this dependence altered from homogeneous to micellar nucleation regime. The decrease in particle size (D) with increasing surfactant concentration (S) was observed in all the cases; however, the exponents of D vs. S were not similar for all the cases. In the homogeneous nucleation regime, exponents followed the order as AAc (0.446) > MAA (0.396) > NaSS (0.252) > HEMA (0.241), whereas the order was almost reversed in the micellar nucleation regime as NaSS (0.406) > HEMA (0.228) > AAc (0.206) > MAA (0.172). The hydrophobic/hydrophilic character and the steric factors were found to be the driving force for the variation in D vs. S exponents with ionic comonomer structure. The presence of charges on the particle surface contributed by the ionic comonomers triggered the self-assembly of the particles upon sedimentation and diffracted visible light obeying Bragg's law.

14.
J Colloid Interface Sci ; 354(2): 506-10, 2011 Feb 15.
Article En | MEDLINE | ID: mdl-21145064

Novel approach for the synthesis of core-shell polystyrene nanoparticles by living hydrophilic polymer consisting of thiocarbonyl thio end group is reported. The surfactant free emulsion polymerization of styrene in the presence of macro-RAFT (reversible addition fragmentation chain transfer) agent is carried out to synthesize stable latex particles with smaller particle size. A macro-RAFT agent is prepared by homopolymerization of sodium styrene sulfonate (NaSS) in aqueous phase by using dithioester as chain transfer agent. This synthesized polystyrene sulfonate-sodium (PSS-Na) based macro-RAFT agent, which is essentially water soluble macromolecular chain transfer agent used for the surfactant-free batch emulsion polymerization of styrene. Transmission electron microscopy (TEM) study of the synthesized colloids shows the narrow particle size distribution with core-shell morphology.

15.
J Colloid Interface Sci ; 351(2): 374-83, 2010 Nov 15.
Article En | MEDLINE | ID: mdl-20800238

We report formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles from a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and an ionomer sodium salt of sulfonated polystyrene (SPS-Na). The ionomer used for the blending is spherical in shape with sulfonate groups on the surface of the particles. An in depth investigation of the blends at various sulfonation degrees and compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interactions between the N-H groups of PBI and the sulfonate groups of SPS-Na. The disruption of PBI chains self association owing to the interaction between the functional groups of these polymer pairs is the driving force for the blending. Thermodynamical studies carried out by using differential scanning calorimeter (DSC) establish partially miscible phase separated blending of these polymers in a wider composition range. The two distinguishable glass transition temperatures (T(g)) which are different from the neat components and unaltered with the blends composition attribute that the domain size of heterogeneity (d(d)) of the blends is >20 nm since one of the blend component (SPS-Na particle) diameter is ∼70 nm. The diminish of PBI chains self association upon blending with SPS-Na particles and the presence of invariant T(g)'s of the blends suggest the wrapping of PBI chains over the SPS-Na spherical particle surface and hence resulting a core-shell morphology. Transmission electron microscopy (TEM) study provides direct evidence of core-shell nanoparticle formation; where core is the polystyrene and shell is the PBI. The sulfonation degree affects the blends phase separations. The higher degree of sulfonation favors the disruption of PBI self association and thus forms partially miscible two phases blends with core-shell morphology.


Benzimidazoles/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Sulfonic Acids/chemistry , Particle Size , Polystyrenes/chemical synthesis , Surface Properties
16.
J Phys Chem B ; 114(9): 3122-32, 2010 Mar 11.
Article En | MEDLINE | ID: mdl-20148529

The aggregation behavior of poly(4,4'-diphenylether-5,5'-bibenzimidazole) (OPBI) in polar aprotic (dimethyl acetamide, DMAc) and protic (formic acid, FA) solvents is studied as a function of the polymer concentration and solution temperature. The effects of solvent protic character on the aggregation behavior of OPBI are elucidated. The photophysical studies suggest that the OPBI chains form aggregated structures in both DMAc and FA solutions when the OPBI concentration is increased. The dependences of the emission spectra on the polymer concentrations in two solvents are not similar in nature, indicating that in both of the solvents the aggregations are intermolecular processes, though their mechanisms are different owing to the polyelectrolytic nature of OPBI in FA medium. The triexponential decay profiles obtained from the time-resolved fluorescence study for the concentrated solutions (both in DMAc and FA) display a negative fractional coefficient and longer excited state lifetime, providing support for the aggregations at higher concentration. The temperature dependence emission spectra suggest that the aggregations in both of the solvents destabilize with increasing temperature. The higher activation energy of aggregation (E(A)) in DMAc (5.62 KJ/mol) compared with that in FA (3.07 kJ/mol) reveals that the aggregation formation pathways are different in two solvents and stronger aggregates are formed in the former solvent. The dilute solution viscometry (DSV) studies demonstrate that the OPBI chains adapt a bigger extended conformation in FA compared with DMAc owing to the stronger intramolecular chain repulsion in FA arising due to the polyelectrolyte nature of OPBI in this solvent. A conformation transition of OPBI chains from compact collapsed to extended conformer is observed in DMAc solvent with increasing concentration, whereas any such transition is absent in FA medium. Transmission electron microscope (TEM) images and circular dichroism (CD) spectra are also in agreement with the presence of a conformational transition in DMAc and the absence of it in FA. The temperature dependent DSV studies further support the disruption of aggregated structure with increasing temperature in both of the solvents. DSV studies exhibit that the deaggregation is driven by a conformation transition (extended to compact collapsed) in DMAc, whereas in FA the disruption happens without conformational transition.


Benzimidazoles/chemistry , Solvents/chemistry , Acetamides/chemistry , Formates/chemistry , Microscopy, Electron, Transmission , Spectrometry, Fluorescence , Temperature , Viscosity
17.
J Phys Chem B ; 112(17): 5305-10, 2008 May 01.
Article En | MEDLINE | ID: mdl-18393552

We report a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and a semicrystalline polymer poly(vinylidene fluoride) (PVDF). A systematic investigation of the blend pair in various compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interaction involving the N-H groups of PBI and the >CF(2) groups of PVDF. Blending shows a maximum 30 cm(-1) frequency shift in the N-H stretching band of PBI and also the existence of a partial double bond character in the PVDF chain. Differential scanning calorimetry (DSC) study proves the miscibility of these polymers in a wider composition range. The decrease of the T(g) with increasing PVDF in the blend and also the decrease of both the T(m) and T(c) with increasing PBI in the blend attribute the miscibility of the blend systems. The PA doping level of the blend membranes improves significantly as a result of the hydrophobic nature of the PVDF component.

18.
J Phys Chem B ; 111(42): 12124-32, 2007 Oct 25.
Article En | MEDLINE | ID: mdl-17914796

In the present work, a series of novel random polybenzimidazole (PBI) copolymers consisting of m- and p-phenylene linkages are synthesized from various stoichiometric mixtures of isophthalic acid (IPA) and terephthalic acid (TPA) with 3,3',4,4'-tetraaminobiphenyl (TAB) by solution copolycondensation in polyphosphoric acid (PPA). The resulting copolymers are characterized by different techniques to obtain their molecular properties parameters. The monomer concentration in the polymerization plays an important role in controlling the molecular weight of the polymer. Surprisingly, a simple change in the dicarboxylic acid architecture from meta (IPA) to para (TPA) increases the molecular weight of the copolymers, which is maximum for the para homopolymer. The low solubility of TPA in PPA is found to be the dominating factor for obtaining the higher molecular weight polymer in the case of the para structure. FT-IR study shows that the introduction of the para structure enhances the conjugation along the polymer chain. The positive deviation of the copolymer composition from the feed ratio is due to the higher reactivity ratio of TPA than IPA, which is obtained from proton NMR studies. The incorporation of the para structure in the chain enhances the thermal stability of the polymers. The para homopolymer shows 59 degrees C lower glass transition temperature compare to the meta homopolymer indicating enhancement of the flexibility of the polymer chain due the introduction of the p-phenylene linkage in the backbone. The T(g) of the copolymers shows both positive and negative deviation from the expected T(g) calculated by the Fox equation. The enhanced conjugation of the polymer chains also influences the photophysical properties of the polymers in solution. All the PBI polymers exhibit strong fluorescence in dimethylacetamide solution. As expected, that all the polymers are amorphous in nature reveals that the copolymerization does not influence the packing characteristics of the PBI chains.

19.
J Am Chem Soc ; 126(9): 2971-7, 2004 Mar 10.
Article En | MEDLINE | ID: mdl-14995215

We developed a new sensing motif for the detection and quantification of creatinine, which is an important small molecule marker of renal dysfunction. This novel sensor motif is based on our intelligent polymerized crystalline colloidal array (IPCCA) materials, in which a three-dimensional crystalline colloidal array (CCA) of monodisperse, highly charged polystyrene latex particles are polymerized within lightly cross-linked polyacrylamide hydrogels. These composite hydrogels are photonic crystals in which the embedded CCA diffracts visible light and appears intensely colored. Volume phase transitions of the hydrogel cause changes in the CCA lattice spacings which change the diffracted wavelength of light. We functionalized the hydrogel with two coupled recognition modules, a creatinine deiminase (CD) enzyme and a 2-nitrophenol (2NPh) titrating group. Creatinine within the gel is rapidly hydrolyzed by the CD enzyme in a reaction which releases OH(-). This elevates the steady-state pH within the hydrogel as compared to the exterior solution. In response, the 2NPh is deprotonated. The increased solubility of the phenolate species as compared to that of the neutral phenols causes a hydrogel swelling which red-shifts the IPCCA diffraction. This photonic crystal IPCCA senses physiologically relevant creatinine levels, with a detection limit of 6 microM, at physiological pH and salinity. This sensor also determines physiological levels of creatinine in human blood serum samples. This sensing technology platform is quite general. It may be used to fabricate photonic crystal sensors for any species for which there exists an enzyme which catalyzes it to release H(+) or OH(-).


Biosensing Techniques/methods , Creatinine/blood , Acrylic Resins/chemistry , Aminohydrolases/chemistry , Humans , Latex/chemistry , Nitrophenols/chemistry , Polystyrenes/chemistry
...